The general form of the beta function is defined by the following definite integral
\begin{equation*}
{{B}_{x}}\left( \alpha ,\beta \right)=\int_{0}^{x}{{{t}^{\alpha -1}}{{\left( 1-t \right)}^{\beta -1}}dt},
\end{equation*}
The complete beta is closely associated with the gamma function. With some manipulations, we can transform
the complete, incomplete, and regularized beta functions into a form of the "h" function
\begin{equation*}
B\left(\alpha,\beta\right)=\frac{{\exp(-C)}h_{\alpha-1}^{-C}h_{\beta -1}^{-C}}{h_{\alpha +\beta -1}^{-C}},\tag{4.9}
\end{equation*}
[Proof for (4.9)]
\begin{align*}
\begin{split}
{{B}_{x}}\left(\alpha,\beta\right)={{x}^{\alpha}}{\exp(-x)}h_{\alpha -1}^{-x}+\sum\limits_{i=1}^{\infty }&\Bigg\{ \left[
\prod\limits_{j=1,j\ne i}^{i+1}{\left( \beta -j \right)} \right] \\&
\left[ {{x}^{\alpha }}{\exp(-x)}h_{\alpha -1}^{-x}-\sum\limits_{k=0}^{i-1}{{{\left( -1 \right)}^{k}}\frac{{{x}^{\alpha +k}}}{k!\left(
\alpha +k \right)}} \right] \Bigg\},
\end{split} \tag{4.10}
\end{align*}
[Proof for (4.10)]
With the above results, we present the distribution functions of eight related distributions as an "h" function, such as the beta, binomial, F, beta-prime, negative binomial, Yule-Simon, noncentral F, and noncentral t distributions.
C19 Beta distribution
\begin{equation*}
F\left( x;\alpha ,\beta \right)={{I}_{x}}\left( \alpha ,\beta \right),
\end{equation*}
C20 Beta prime distribution
\begin{equation*}
F\left( x;\alpha ,\beta \right)={{I}_{\tfrac{x}{1+x}}}\left( \alpha ,\beta \right),
\end{equation*}
C21 Binomial distribution
\begin{equation*}
F\left( k;n,p \right)={{I}_{1-p}}\left( n-k,1+k \right),
\end{equation*}
C22 Negative binomial distribution
\begin{equation*}
F\left( k;r,p \right)=1-{{I}_{p}}\left( k+1,r \right),
\end{equation*}
C23 Yule-Simon distribution
\begin{equation*}
F\left(k;\rho\right)=1-\frac{k{\exp\left(-C\right)}h_{k-1}^{-C}h_{\rho }^{-C}}{h_{k+\rho }^{-C}},
\end{equation*}
C24 F-distribution
\begin{equation*}
F\left(x;{{d}_{1}},{{d}_{2}} \right)={{I}_{\tfrac{{{d}_{1}}x}{{{d}_{1}}x+{{d}_{2}}}}}\left( \frac{{{d}_{1}}}{2},\frac{{{d}_{2}}}{2}
\right),
\end{equation*}
C25 Noncentral F-distribution
\begin{equation*}
F\left( x;{{d}_{1}},{{d}_{2}},\lambda \right)=\sum\limits_{i=0}^{\infty }{\left[ \frac{{{\left( \frac{1}{2}\lambda
\right)}^{i}}{\exp\left(\tfrac{-\lambda }{2}\right)}}{i!} \right]}{{I}_{\tfrac{{{d}_{1}}x}{{{d}_{1}}x+{{d}_{2}}}}}\left(
\frac{{{d}_{1}}}{2}+i,\frac{{{d}_{2}}}{2} \right),
\end{equation*}
C26 Noncentral t-distribution
\begin{equation*}
F\left( x;\nu ,\delta \right)=
\begin{cases}
\Phi \left( -\delta \right)+\frac{{\exp\left(-\tfrac{1}{2}{{\delta }^{2}}\right)}}{2}\sum\limits_{j=0}^{\infty }{\frac{{{\left(
\tfrac{{{\delta }^{2}}}{2} \right)}^{\tfrac{1}{2}j}}}{\Gamma \left( \tfrac{j}{2}+1 \right)}}{{I}_{\tfrac{{{x}^{2}}}{v+{{x}^{2}}}}}\left(
\frac{j+1}{2},\frac{\nu }{2} \right) \quad \thinspace ,\text{if $x\ge 0$;}\\
\begin{split}
\Phi \left( -\delta \right)&+\frac{{\exp\left(-\tfrac{1}{2}{{\delta }^{2}}\right)}}{2}\sum\limits_{j=0}^{\infty }{\frac{{{\left(
\tfrac{{{\delta }^{2}}}{2} \right)}^{\tfrac{1}{2}j}}}{\Gamma \left( \tfrac{j}{2}+1 \right)}}{{I}_{\tfrac{{{x}^{2}}}{v+{{x}^{2}}}}}\left(
\frac{j+1}{2},\frac{\nu }{2} \right)\\&-{\exp\left(-\tfrac{1}{2}{{\delta }^{2}}\right)}\sum\limits_{j=0}^{\infty }{\frac{{{\left(
\tfrac{{{\delta }^{2}}}{2} \right)}^{j}}}{j!}}{{I}_{\tfrac{{{x}^{2}}}{v+{{x}^{2}}}}}\left( j+\frac{1}{2},\frac{\nu }{2} \right), \text{if $x<0$,}
\end{split}
\end{cases}
\end{equation*}